Lorenzo Uccellini

I have no relationships to disclose

SOCIETY FOR IMMUNOTHERAPY OF CANCER 26TH ANNUAL MEETING & ASSOCIATED PROGRAMS

November 1-6, 2011 • North Bethesda, MD

IRF-5 polymorphism in Melanoma

Lorenzo Uccellini¹, Narnygerel Erdenebileg¹, Valeria De Giorgi¹, Sara Tomei¹, Maria Libera Ascierto¹, Davide Bedognetti¹, Quizhen Liu¹, Ena Wang¹, Francesco M. Marincola¹ and Steven A. Rosenberg²

> ¹Infectious Disease and Immunogenetics Section (IDIS), DTM, CC Trans-NIH Center for Human Immunology NIH, BETHESDA, MD

²Surgery Branch, NCI, National Institutes of Health, Bethesda, MD, USA

Autoimmunity and immune responsiveness of melanoma

Development of **autoimmunity** during **immunotherapy** (IL-2, IFN-a and anti-CTLA4) has been linked to responsiveness and/or tumor regression in patient with malignant melanoma.

> **Hypothyroidism** Atkins MB- Kaplan MM, Engl J Med , 1988

Vitiligo Rosenberg SA, White DE er Al., 1996 JETI

Autoimmune retinopathy

Chan C, O'Day J. Clin Experiment Ophthalmol, 2001

Appearance of antibodies (IFNa-2b) Gogas H. et al. NEJM 2006

Do predictors of autoimmunity correlate with rejection of melanoma?

Rejection of MM

Autoimmunity and Interferon Regulatory Factor (IRF)-5

* Kozyrev SV, Alarcon-Riquelme ME. **The genetics and biology of Irf5-mediated signaling in lupus.** Autoimmunity. 2007 Dec;40(8):591-601

IRF-5

- Strongly and consistently Systemic Lupus Erythematous (SLE)-associated locus
- a critical transcription factor in the type I IFN pathway
- primarily involved in host defense against viruses and pathogens in general
- regulates the expression of IFNdependent genes, inflammatory cytokines and genes involved in apoptosis

Three functional variants in *IRF5* define risk and protective haplotypes for SLE

T allele of <u>rs2004640 (G>T</u>) introduces a donor splice site <u>leading to the expression of an</u> <u>alternative isoform</u> (exon 1B transcripts and the reduction of exon 1C–derived transcripts).

Three functional variants in *IRF5* define risk and protective haplotypes for SLE

• The presence or absence of the repeats determines the isoforms to be expressed

→ Leading to differential interactions with co-activator or inhibitor proteins in specific cells or tissue, and in turn to the promotion of a particular set of IRF5 targets.

Three functional variants in *IRF5* define risk and protective haplotypes for SLE

located in the 3-UTR polyadenylation site AAT(G/A)AA.

- <u>G allele</u> disrupts the poly(A) site and thus causing transcription to continue (LONG mRNA).
- <u>A allele</u> predicts mRNA with a short 3-UTR (SHORT mRNA)

Rs10954**213 (G>A)** could lead to a functional mutation regulating levels of IRF5 due to increased mRNA stability

Project overview

SAMPLE STUDIED

142 TILs from patients enrolled in five adoptive cell therapy trials
112 parental melanoma metastases
15 melanoma cell lines derived from the 15 melanoma metastases

Analysis of Tumor Infiltrating Lymphocytes (TIL)

142 TILs from patients enrolled in five adoptive cell therapy trials

112 parental melanoma metastases **15** melanoma cell lines derived from the 15 melanoma metastases

Sequencing Results

142 TILs from patients enrolled in five adoptive cell therapy trials

	allalia fuanyan sia a	Frequenc		
polymorphism	allelic frequencies	R	NR	two tailed p
rc100E4212	А	0.69	0.49	0.0015
1810954215	G	0.31	0.51	0.0015
rs11770589	А	0.54	0.38	0.0116
	G	0.46	0.62	0.0110
rs6953165	С	0.97	0.90	0.025
	G	0.03	0.10	0.025
rs2004 <mark>640</mark>	С	0.47	0.51	
	G	0.53	0.49	0.55
Indel	ins	0.46	0.62	0.006
	del	0.55	0.38	0.000

R= Objective Response NR = No Response

Pair wise pattern of Linkage Disequilibrium across IRF5

142 TILs from patients enrolled in five adoptive cell therapy trials

Responders

Non Responders

Sequencing Results

142 TILs from patients enrolled in five adoptive cell therapy trials

\mathbf{N}

nolymorphism	allalic fraguancias	Frequenc	two tailed n		
polymorphism	allelic frequencies	R	NR	two taneu p	
rc100E4212	А	0.69	0.49	0.0015	
1510954215	G	0.31	0.51	0.0015	
rs11770589	А	0.54	0.38	0.0116	
	G	0.46	0.62	0.0116	
FCCOE21CE	С	0.97	0.90	0.025	
rs6953165	G	0.03	0.10	0.025	
rs2004 <mark>640</mark>	С	0.47	0.51		
	G	0.53	0.49	0.55	
Indel	ins	0.46	0.62	0.006	
	del	0.55	0.38	0.006	

R= Objective Response NR = No Response

IRF5 rs10954213 AA genotype and A allele are associated to OR in TILs from melanoma patients

Genotype fre	quency	R	NR	R	NR	X ²	two tailed p
	-	()	N)	Freque	ncy		
	AA	33	19	0.47	0.27		
rs10954 <mark>213</mark>	AG	30	31	0.43	0.44	10.4	0.007
	GG	7	20	0.1	0.29		
	· · · · ·						
<u>Allele frequ</u>	ency	R	NR	R	NR	two ta	ailed p
		()	N)	Freque	ncy		
rc10054212	P(A)=	96	69	0.69	0.49	0.001	
1510954215	P(G)=	44	71	0.31	0.51		

IRF5 rs10954213 AA genotype and A allele are associated to OR in TILs from melanoma patients

Genotype free	quency	R	NR	R	NR	X ²	two tailed p
		()	N)	Freque	ency		
	AA	33	19	0.47	0.27		
rs10954 <mark>213</mark>	AG	30	31	0.43	0.44	10.4	0.007
	GG	7	20	0.1	0.29		
				1			
<u>Allele frequ</u>	ency	R	NR	R	NR	two	tailed p
		()	N)	Freque	ency		
rc10054212	P(A)=	96	69	0.69	0.49	0.001	
1510954215	P(G)=	44	71	0.31	0.51		

Gene expression profile of 142 TILs

• MM

• TILs

Gene expression profile of 142 TILs

• MM

Analysis of Tumor Infiltrating Lymphocytes (TIL)

142 TILs from patients enrolled in five adoptive cell therapy trials

112 parental melanoma metastases **15** melanoma cell lines derived from the 15 melanoma metastases

Gene expression profile of 142 TILs

• MM

Gene expression profile of 142 TILs

borderline differences in prediction of Response

• MM

Gene expression profile of 142 TILs

borderline differences in prediction of Response

• MM

Gene expression profile of **112** pre-treatment melanoma metastasis

Analysis of parental tumor

142 TILs from patients enrolled in five adoptive cell therapy trials

112 parental melanoma metastases

15 melanoma cell lines derived from the 15 melanoma metastases

-2_____0 Standardized Intensity

	R	NR	Total
Group A	50	33	83
Group B	8	21	29
Total	58	54	112

Fisher's exact test Two-tailed p value < 0.0027

-2 Standardized Intensity

	R	NR	Total
Group A	50	33	83
Group B	8	21	29
Total	58	54	112

Fisher's exact test Two-tailed p value < 0.0027

RNRTotalGroup Aa451560Group B82129Total535489

Fisher's exact test Two-tailed p value < 0.00003

Gene expression profile of 142 TILs

borderline differences in prediction of Response

• MM

Gene expression profile of **112** pre-treatment melanoma metastasis

Gene expression profile of 142 TILs

borderline differences in prediction of Response

• MM

Gene expression profile of 112 pre-treatment melanoma metastasis Is a stronger predictor of Response compared with TILs

to test the weight of the IRF5 genotype on the intrinsic biology of cancer cells independent of microenvironment influences

IRF5 rs10954213 (G>A) in cell lines vs. TILs

Cell lines ID		rs10954213 (G>A)			
		Melanoma cell lines	Germline		
Coded TRi_120	3104	AA	AA		
Coded TRi_064	2458	AA	AA		
Coded TRi_121	3107	AA	AA		
Coded TRi_030	2155	AA	AA		
Coded TRi_077	2744	AA	AA		
Coded TRi_048	2492	AA	AA		
Coded TRi_047	2448	AA	AA		
Coded TRi_032	2224	AG	AG		
Coded TRi_062	2523	AG	AG		
Coded TRi_013	2035	AG	AG		
Coded TRi_040	2427	AG	AG		
Coded TRi_016	2075	AG	AG		
Coded TRi_109	3025	-/G (LOH)	AG		
Coded TRi_005	1866	GG	GG		
Coded Tri 088	2805	GG	GG		

to test the weight of the IRF5 genotype on the intrinsic biology of cancer cells independent of microenvironment influences

to test the weight of the IRF5 genotype on the intrinsic biology of cancer cells independent of microenvironment influences

t test	IFN-α vs no Tx	AA vs GG			
		IFN+	IFN-	IFN +/-	
p<0.001	118	47	50	255	
p<0.05	1151	1570	1395	3489	

signature of 255 genes that differentiate the two cell line genotypes independently of the IFN treatment

to test the weight of the IRF5 genotype on the intrinsic biology of cancer cells independent of microenvironment influences

Analysis of Parental Tumors

142 TILs from patients enrolled in five adoptive cell therapy trials 112 parental melanoma metastases 15 melanoma cell lines derived from the 15 melanoma metastases

Cluster of Tumors based on cell lines comparing AA vs GG at p < 0.001 37 genes Response CR NR PR 2 -2 Standardized Intensity 2 0

Fisher test Aa vs $B p_2$ -value < 0.00001

	R	NR	Total
Group Aa	41	19	60
Group B	3	15	29
Total	44	34	89

Cluster of Tumors based on cell lines

comparing AA vs GG at p < 0.001

37 genes

-2 Standardized Intensity

Summary

- 1. Polymorphism of IRF-5 appears to be a predictor of immune responsiveness of melanoma metastases to adoptive therapy with TIL
- 2. The rs10954213 G allele, which is protective against SLE, is the most predictive of non responsiveness suggesting a correlation between autoimmunity and melanoma immune responsiveness.
- 3. The expression profile of TIL classified according to AA vs GG IRF5 *rs10954213* (G>A) appears to be a borderline predictor of immune responsiveness
- 4. The expression profile of pre-treatment melanoma metastases classified according to AA vs GG IRF5 *rs10954213* (G>A) appears to be a stronger predictor of immune responsiveness compared with TILs
- 5. Comparison of melanoma cell lines classified according to the AA vs GG IRF5 rs10954213 (G>A) highlights a signature of genes that differentiates the two genotypes independently of micro environmental influences
- 6. The signatures differentiating the two cell line genotypes in vitro could predict of the responsiveness of melanoma metastases in vivo suggesting that immune responsiveness is at least in part genetically determined.

CONCLUSIONS

Thus, it appears that immune responsiveness is at least in part dependent on the genetic background of the host which affects the biology of cancer cells primarily and secondarily the immune responsiveness of tumors

ACKNOLEDGEMENTs

<u>NCI,</u> Surgery branch

DTM, CC Immuno-genetic section

Steven A. Rosenberg Mark Dudley John Wunderlich

Francesco M. Marincola Ena Wang

